Cookie Consent by Free Privacy Policy website Every component is a masterpiece
november 25, 2016 - Porsche

Every component is a masterpiece

Innovation in every detail and the precise composition of all elements have driven the Porsche 919 Hybrid to the forefront of technological development. Christophorus now shines the spotlight on them individually for the first time.

An engine control unit and a chassis control unit control the interaction of all drive #components in the 919 Hybrid, including the combustion engine and the exhaust energy recuperation in the rear and the electric motor on the front axle. Together, they are orchestrated by the dual electronic computer heart in such a way that the intelligent control of the all-wheel-drive system achieves maximum efficiency and the best-possible lap times. By means of the three-dimensional track profiles, every conceivable driving condition is simulated and optimized before the races. The control units take this information and translate the operation of the drive #components into a perfectly harmonized interaction at all times. One additional requirement in the development of the high-performance computers is extremely lightweight construction.

For the hybrid system in the 919, #porsche opted for a high-voltage setup from the outset: 800 volts. It was not easy to find suitable #components. For the storage medium, the engineers opted for a liquid-cooled lithium-ion battery cell used exclusively by #porsche.One of the race car’s batteries consists of hundreds of these cells. They feature a high power density—so they charge and can discharge energy quickly—but also a good energy density, that is, a high storage capacity. In battery cell development, new materials to further enhance the power and energy density are being tested all the time. In this way, #porsche is also the front-runner in developing technologies that will be used in future series applications in the field of electric and hybrid vehicles.

A paltry 1.1 pounds weighs a side mirror

If left to their own devices, aerodynamics engineers would prefer to do without airflow-disturbing protuberances altogether. For the drivers they are anything but superfluous, however, and for safety reasons the rules provide some parameters: they must have at least 15.5 square inches of mirror surface and be designed in such a way that the driver can see all cars more than 32 feet behind him while seated in his normal sitting position. Track marshals check the mirrors with alphabet boards to ensure that all is as it should be. Another requirement is the day/night setting—a light-sensitive film reduces glare from pursuers. The mirror surface itself is a thin glass layer adhered to a carbon substrate. The housing of the mirror is aerodynamically optimized to minimize wind resistance as well as vibrations. The mirrors and the adjustment mechanism are housed in a carbon-fiber composite shell. Altogether, the whole setup weighs a paltry 1.1 pounds.

The #porsche #919hybrid is the only prototype in the entire FIA World Endurance Championship field that not only recuperates energy and converts it into electric current during the braking process, but also has the ability to do so every time it accelerates. To make that possible, there is a small turbine installed in the exhaust tract; this turbine drives a generator with more than 120,000 revolutions per minute. The electricity thus generated is—like the electricity generated by the front-axle braking energy—stored in a lithium-ion battery. Once there, the driver can apply the additional energy at the touch of a button. To adapt the turbine to the different conditions, it is built with variable turbine geometry (VTG). Thanks to this VTG technology—the variable adaptation of the turbine geometry to the level of the exhaust pressure—the turbine can be driven even at low engine speeds and thus low exhaust pressures.